direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C6×C22≀C2, C25⋊5C6, (C24×C6)⋊1C2, C23⋊6(C3×D4), C22⋊4(C6×D4), C24⋊11(C2×C6), (C22×D4)⋊6C6, (C22×C6)⋊17D4, (C2×C12)⋊10C23, (C6×D4)⋊60C22, (C23×C6)⋊2C22, C23⋊1(C22×C6), (C22×C6)⋊3C23, (C2×C6).341C24, C6.180(C22×D4), (C22×C12)⋊45C22, C22.15(C23×C6), C2.4(D4×C2×C6), (D4×C2×C6)⋊18C2, (C2×D4)⋊8(C2×C6), (C2×C6)⋊15(C2×D4), (C2×C22⋊C4)⋊8C6, (C2×C4)⋊1(C22×C6), (C22×C4)⋊6(C2×C6), (C6×C22⋊C4)⋊28C2, C22⋊C4⋊10(C2×C6), (C3×C22⋊C4)⋊64C22, SmallGroup(192,1410)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C6×C22≀C2
G = < a,b,c,d,e,f | a6=b2=c2=d2=e2=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, fbf=bd=db, be=eb, cd=dc, fcf=ce=ec, de=ed, df=fd, ef=fe >
Subgroups: 1138 in 662 conjugacy classes, 210 normal (12 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, C6, C6, C2×C4, C2×C4, D4, C23, C23, C23, C12, C2×C6, C2×C6, C2×C6, C22⋊C4, C22×C4, C2×D4, C2×D4, C24, C24, C24, C2×C12, C2×C12, C3×D4, C22×C6, C22×C6, C22×C6, C2×C22⋊C4, C22≀C2, C22×D4, C25, C3×C22⋊C4, C22×C12, C6×D4, C6×D4, C23×C6, C23×C6, C23×C6, C2×C22≀C2, C6×C22⋊C4, C3×C22≀C2, D4×C2×C6, C24×C6, C6×C22≀C2
Quotients: C1, C2, C3, C22, C6, D4, C23, C2×C6, C2×D4, C24, C3×D4, C22×C6, C22≀C2, C22×D4, C6×D4, C23×C6, C2×C22≀C2, C3×C22≀C2, D4×C2×C6, C6×C22≀C2
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 34)(2 35)(3 36)(4 31)(5 32)(6 33)(7 16)(8 17)(9 18)(10 13)(11 14)(12 15)(19 45)(20 46)(21 47)(22 48)(23 43)(24 44)(25 41)(26 42)(27 37)(28 38)(29 39)(30 40)
(1 29)(2 30)(3 25)(4 26)(5 27)(6 28)(7 10)(8 11)(9 12)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)(31 42)(32 37)(33 38)(34 39)(35 40)(36 41)(43 46)(44 47)(45 48)
(1 39)(2 40)(3 41)(4 42)(5 37)(6 38)(7 20)(8 21)(9 22)(10 23)(11 24)(12 19)(13 43)(14 44)(15 45)(16 46)(17 47)(18 48)(25 36)(26 31)(27 32)(28 33)(29 34)(30 35)
(1 26)(2 27)(3 28)(4 29)(5 30)(6 25)(7 13)(8 14)(9 15)(10 16)(11 17)(12 18)(19 48)(20 43)(21 44)(22 45)(23 46)(24 47)(31 39)(32 40)(33 41)(34 42)(35 37)(36 38)
(1 17)(2 18)(3 13)(4 14)(5 15)(6 16)(7 28)(8 29)(9 30)(10 25)(11 26)(12 27)(19 32)(20 33)(21 34)(22 35)(23 36)(24 31)(37 45)(38 46)(39 47)(40 48)(41 43)(42 44)
G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,34)(2,35)(3,36)(4,31)(5,32)(6,33)(7,16)(8,17)(9,18)(10,13)(11,14)(12,15)(19,45)(20,46)(21,47)(22,48)(23,43)(24,44)(25,41)(26,42)(27,37)(28,38)(29,39)(30,40), (1,29)(2,30)(3,25)(4,26)(5,27)(6,28)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(31,42)(32,37)(33,38)(34,39)(35,40)(36,41)(43,46)(44,47)(45,48), (1,39)(2,40)(3,41)(4,42)(5,37)(6,38)(7,20)(8,21)(9,22)(10,23)(11,24)(12,19)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(25,36)(26,31)(27,32)(28,33)(29,34)(30,35), (1,26)(2,27)(3,28)(4,29)(5,30)(6,25)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18)(19,48)(20,43)(21,44)(22,45)(23,46)(24,47)(31,39)(32,40)(33,41)(34,42)(35,37)(36,38), (1,17)(2,18)(3,13)(4,14)(5,15)(6,16)(7,28)(8,29)(9,30)(10,25)(11,26)(12,27)(19,32)(20,33)(21,34)(22,35)(23,36)(24,31)(37,45)(38,46)(39,47)(40,48)(41,43)(42,44)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,34)(2,35)(3,36)(4,31)(5,32)(6,33)(7,16)(8,17)(9,18)(10,13)(11,14)(12,15)(19,45)(20,46)(21,47)(22,48)(23,43)(24,44)(25,41)(26,42)(27,37)(28,38)(29,39)(30,40), (1,29)(2,30)(3,25)(4,26)(5,27)(6,28)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(31,42)(32,37)(33,38)(34,39)(35,40)(36,41)(43,46)(44,47)(45,48), (1,39)(2,40)(3,41)(4,42)(5,37)(6,38)(7,20)(8,21)(9,22)(10,23)(11,24)(12,19)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(25,36)(26,31)(27,32)(28,33)(29,34)(30,35), (1,26)(2,27)(3,28)(4,29)(5,30)(6,25)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18)(19,48)(20,43)(21,44)(22,45)(23,46)(24,47)(31,39)(32,40)(33,41)(34,42)(35,37)(36,38), (1,17)(2,18)(3,13)(4,14)(5,15)(6,16)(7,28)(8,29)(9,30)(10,25)(11,26)(12,27)(19,32)(20,33)(21,34)(22,35)(23,36)(24,31)(37,45)(38,46)(39,47)(40,48)(41,43)(42,44) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,34),(2,35),(3,36),(4,31),(5,32),(6,33),(7,16),(8,17),(9,18),(10,13),(11,14),(12,15),(19,45),(20,46),(21,47),(22,48),(23,43),(24,44),(25,41),(26,42),(27,37),(28,38),(29,39),(30,40)], [(1,29),(2,30),(3,25),(4,26),(5,27),(6,28),(7,10),(8,11),(9,12),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24),(31,42),(32,37),(33,38),(34,39),(35,40),(36,41),(43,46),(44,47),(45,48)], [(1,39),(2,40),(3,41),(4,42),(5,37),(6,38),(7,20),(8,21),(9,22),(10,23),(11,24),(12,19),(13,43),(14,44),(15,45),(16,46),(17,47),(18,48),(25,36),(26,31),(27,32),(28,33),(29,34),(30,35)], [(1,26),(2,27),(3,28),(4,29),(5,30),(6,25),(7,13),(8,14),(9,15),(10,16),(11,17),(12,18),(19,48),(20,43),(21,44),(22,45),(23,46),(24,47),(31,39),(32,40),(33,41),(34,42),(35,37),(36,38)], [(1,17),(2,18),(3,13),(4,14),(5,15),(6,16),(7,28),(8,29),(9,30),(10,25),(11,26),(12,27),(19,32),(20,33),(21,34),(22,35),(23,36),(24,31),(37,45),(38,46),(39,47),(40,48),(41,43),(42,44)]])
84 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2S | 2T | 2U | 3A | 3B | 4A | ··· | 4F | 6A | ··· | 6N | 6O | ··· | 6AL | 6AM | 6AN | 6AO | 6AP | 12A | ··· | 12L |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | 2 | 3 | 3 | 4 | ··· | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | 4 | 1 | 1 | 4 | ··· | 4 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
84 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | + | + | + | ||||||
image | C1 | C2 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | C6 | D4 | C3×D4 |
kernel | C6×C22≀C2 | C6×C22⋊C4 | C3×C22≀C2 | D4×C2×C6 | C24×C6 | C2×C22≀C2 | C2×C22⋊C4 | C22≀C2 | C22×D4 | C25 | C22×C6 | C23 |
# reps | 1 | 3 | 8 | 3 | 1 | 2 | 6 | 16 | 6 | 2 | 12 | 24 |
Matrix representation of C6×C22≀C2 ►in GL6(𝔽13)
9 | 0 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 2 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 12 | 0 |
G:=sub<GL(6,GF(13))| [9,0,0,0,0,0,0,9,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,12,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,2,1,0,0,0,0,0,0,0,12,0,0,0,0,12,0] >;
C6×C22≀C2 in GAP, Magma, Sage, TeX
C_6\times C_2^2\wr C_2
% in TeX
G:=Group("C6xC2^2wrC2");
// GroupNames label
G:=SmallGroup(192,1410);
// by ID
G=gap.SmallGroup(192,1410);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-2,-2,701,2102]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^6=b^2=c^2=d^2=e^2=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,f*b*f=b*d=d*b,b*e=e*b,c*d=d*c,f*c*f=c*e=e*c,d*e=e*d,d*f=f*d,e*f=f*e>;
// generators/relations